18禁无遮挡国产精品-欧美黄片在线视频免费观看-丰满人妻被粗大爽视频-亚洲永久精品中文字幕

供求商機(jī)
您現(xiàn)在的位置:首頁(yè) > 供求商機(jī) > 石墨烯 英國(guó)Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

石墨烯 英國(guó)Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

石墨烯 英國(guó)Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882
點(diǎn)擊放大
供應(yīng)數(shù)量:
2139
發(fā)布日期:
2024/6/27
有效日期:
2024/12/27
原 產(chǎn) 地:
已獲點(diǎn)擊:
2139
產(chǎn)品報(bào)價(jià):
  [詳細(xì)資料]

只用于動(dòng)物實(shí)驗(yàn)研究等

Graphene Oxide Powders and Solutions

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2d materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1-5um and 1-50um. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

Graphene Oxide Powder

Graphene Oxide Powder StructureGraphene Oxide Powder XRD
  • List of products
  • What is graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
 

石墨烯 英國(guó)Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

Product List

Graphene Oxide Powders

Product codeM881M882
Flake Size1-5 μm1-50 μm
Flake Thickness0.8-1.2 nm0.8-1.2 nm
Single layer ratio>99%>99%
Purity>99%>99%
Packaging InformationLight resistant bottleLight resistant bottle

Graphene Oxide Solutions

Product codeM883M884M885M886
Solution Volume100ml100ml100ml100ml
Concentration5 mg.ml-10.5 mg.ml-15 mg.ml-10.5 mg.ml-1
SolventsWater:IPAWater:IPAWater:IPAWater:IPA
Flake Sizes1-5 μm1-5 μm1-50 μm1-50 μm
Packaging Information4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles

石墨烯 英國(guó)Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

What Graphene Oxide is

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite,  it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers' Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.

Dispersion Guides

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2d materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5 mg.ml-1.
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).

Technical Data

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF, IPA
Synonyms
  • Single layer GO
  • GO
Classification / Family

2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics

Colour

Black/Brown Sheets/Powder

 

Product Images

Monolayer Graphene OxideGraphene Oxide SEMSEM Images of flakes on silicon

 

想了解更詳細(xì)的產(chǎn)品信息,填寫下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說(shuō)明:

  • 驗(yàn)證碼:

    請(qǐng)輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國(guó)EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號(hào):粵ICP備17105262號(hào)  管理登陸
在線客服
亚洲精品在线观看第二页| 美女av在线一区二区三区| 国产91精品一区麻豆亚洲| 亚洲综合一区二区三区在线| 免费观看日本一区二区视频| 国产三级在线播放完整| 毛片91成人在线播放| 久草尤物视频在线观看| 美女精品国产一区二区三区| 永久免费的成年视频网| 青青草手机视频在线观看| 精品国产亚洲第一区二区三区| 免费在线观看欧美色妇 | 中文字幕日韩亚洲乱码日韩在线 | 五月婷婷中文字幕在线| 久久这里只有精品视频首页| 欧美一区二区三区va| 青青草视频在线视频播放| 亚洲国产成人精品日本| 人妻系列少妇人妻偷人| 亚洲免费视频区一区二| 国产又色又爽又黄的网站| 精品一区二区蜜臀av| 公妇公侵一区二区三区| 日韩精品亚洲人成在线播放| 国产91精品一区麻豆亚洲| 蜜桃在线观看免费高清完整版| 青青草好吊色在线视频| 蜜桃av噜噜一区二区三区策驰| 日韩亚洲在线观看视频| 偷柏自拍亚洲综合在线| 麻豆成人久久精品一区| 国偷自拍第40页在线观看| 欧美激情片免费在线观看| 亚洲av色网在线观看| 精品国产一区二区三区18p| 日本绝色人妻在线播放| 日韩熟妇精品视频一区二区| 国产成人一区二区免费av| 国产精品黄色资源免费在线观看 | 免费观看国产性生活片|